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Section I

Introduction

The Structural Vibration and Acoustics Branch of the US Air Force Flight Dynamics
Laboratory (WRDC/FIBG) has initiated a program to study the dynamics and control of
Large Space Structures (LSS). This Large Space Structures Technology Program (LSSTP)
is intended to enable the Flight Dynamics Laboratory to instrument, test, and analyze
large space structures on the ground in order to predict their behavior in space. Since the
testing ic to be dono in a ground based laboratory, i.e. under 1-g acceleration, the
experiments must be designed so as to counteract this gravitational effect. One proposal is
to use soft suspension systems. Long cables can provide pendulut, support with low
frequency for horizontal motion, but, for a pendulum, the restraint in the vertical direction
is rigid. One way to provide soft restraint vertically, while maintaining the pendulum
approach, is to counter-balance the test model.

The simplest counter-balanced suspension system is the classic Atwood's machine.'
This consists of two masses m1 and m2 connected by an inextensible, flexible wire of
negligible mass, draped over a frictionless, massless pulley, which in turn is rigidly
suspended from an overhead support. The motion of the two masses is assumed to be
constrained to the vertical direction: either there is no motion, the situation that occurs
when the two masses are equal and there is no initial velocity, or, as one mass rises the
other falls. The most ambitious counter-balanced system envisaged in this report consists
of a lattice-type flexible structure suspended over pulleys, no longer considered frictionless,
by a set of wires, no longer inextensible, and counter-balanced by an identical structure.
Since the two structures do counter-balance each other, the net gravitational effect, at
least at the points at which the wires attach to the bodies, is null.

As might be imagined, there is a host of possibilities between these extremes. In this
report we record some of these and indicate how the motion of each may be analyzed. We
have not studied in depth all systems to be described; for those that we have, greater detail
will be given.

The theories and methods used come from Lagrangian mechanics, linear elastic
theory, the calculus of variations, non-linear differential equations, numerical methods for
the solution of algebraic-differential equations, and perturbation theory. Where references
are appropriate, these will be offered; the report otherwise reflects the thoughts of the
author.

i I I I I I I I i1



Section II

Statement of the Problem

II.1.a The classical Atwood's machine is depicted in Figure I.a. The analysis of this
device is included only because it serves as a guide to the logic and methods used in
subsequent problems.

Using the symbols of Figure 1.a, the kinetic energy is:

T = ()mlZl 2 + (-) z (1)
2 11 222

and the potential energy is:

V = mlgz1 + m2gz2  (2)

The Lagrangian function is:

L=T-V (3)

There is, however, a constraint, namely, that the length of the wire joining the two masses
is constant:

, - (h-zl) + irR + (h-z 2 ) = P = length of wire (4)

The modified Lagrangian function is:

L = T-V + A(t)l (5)

and where A(t) is a function of the time, t.

Hamilton's principle implies:

ti

ft 0 L dt= 0 (6)

which in turn yields the Euler-Lagrange equations:

ml 1 + mg -A = 0 (7)

m2iz + m2 g-A=0 (8)

to which we must adjoin the constraint condition: - = r.



With this done, we eliminate A between Equations (7) and (8) and obtain, using Equation
(4):

Tra2 7 (10)

When these equations are integrated, we obtain:

z1 (t) = I[2- II-jgt2 + z'(O)t + Z1(O) (I)

1 1111 - m2] gt

zI(t) = z+ gt- + ,2(0)t + z2(0) (12)

The values for ZY(0) and z2 (0) are quite arbitrary and depend on the configuration, i.e. the

height h, the radius R and the length of the connecting wire. The values for Zl(0) and

z9,(0) are not arbitrary since z*1(0) + z2(0) = 0, i.e. as one mass rises the other must fall at
the same speed, both initially and for all future time.

II.1.b The modified Atwood's machine described in this section is depicted in Figure
1 .b. The method of solution parallels that given above for the classical case.

The kinetic energy is:

T = (!z) 2 + (")m2 
2  (I)

and the potential energy is:

V = mlgz! + m~gz 2  (2)

We could proceed and introduce a constraint equation; it would be:

z1 (t) - z1 (0) z9 (t) - z9 (O) 0 (3)

For variety, we circumvent the use of the constraint by reducing the expressions for the
kinetic and potential energies (written above as functions of z1 and z2 and their time

derivatives) to functions of the single variable 0 and its time derivative. The
transformation that accomplishes this is:

3



z1 = Zl(0) - R 10 (4)

72 = z9 (0) - R20 (5)

so that the kinetic energy becomes:

T = (')(mlRi 2 + m2R2 2) 42 (6)

and the potential energy becomes:

= lgz(0) + mrlgz2 (0) + (m2R2-mlR1 )g0 (7)

The Lagrangian function is:

L =T -V ()

and using thamrilton's principle:

t 1

b f L dt = 0 (9)

t0

We are led to the Euler-Lagrange equation:

[MII R I - m9R2 1(0)
m1 R 12 + m2 R9 2g

In terms of Z and z2 , we have:

mn2 R2 -m 1 R 1

21 = R1 g (11)
2 + MlR12

2 R 1  1

2 1 R R29g (12)

vR R  + in 2 R2

It is Obvious that if R = R2, Equations (11) and (12) reduce to Equations (9) and (10) of

The previous section [II.l.a].

We assume that the interested reader can integrate and interpret both the first and second
integrals of these equations.

11.1.c An idealization of an Atwood's machine wherein the wire connecting the two

masses is elastic is given in Figure i.c. The following additional notation is used:

4



A = cross-sectional area of the wire
E =Young's modulus

= length of the unstressed wire

k = olastic constant of the wire = AE

Again, using the nomenclature of that figure, the kinetic energy is:

-)mnz 1 - + (!)m2i 2
2  (1)

22

and the potential ehergy is:

V = m1gz 1 + r-gz2 + V s  (2)

a nd where Vs is the strain energy in the wire. V5 is found, assuming Hooke's law, as

follows:

If 1 is the length of the unstretched wire, ;.e. the length before the masses m1 and

M) ar. attached, then the strain after the system is in motion is:

s = (2h + 77.r - r) - (z1 +z 2) (3)

The strain energy is:

Vs = (1)ks2  (4)
2

and k is the spring constant for the wire. Again, the Lagrangian is:

L T - V (5)

and ilauiilton's principle dictates:

ti
6 L dt=O0 (6)

1

The Euler-Lagrange equations lead to:

mz+ kz+ z -7

1 k(z 1  z2)-- k[zl(O) + z2 (0)) -mg (7)

m2 2 + k(z 1 + z2 ) = k[zl(O) + z2 (O)]- nvg (8)

which when integrated become:

5



z1 = n2(A cos ot + Bsin ot) + [ m I gt2 + v0 t + Z (9)

z = ml(A cos t + B sin at) + m + C.]gt2 -v 0 t + z* (10)

where A and B are constants of integration, v0 is an initial velocity,

m 1 + m 2
a2 = k m m2 (11)mlm2

and

1+ 2= 1(0) + Z2(°) - [1 21 2

and where:

1! = length of the unstretched wire as measured from the top of the pulley (point P) to the

point where the mass mi is attached (i = 1,2).

We infer from the above equations that the motion of the two masses m and m2 in

an Atwood's machine in which the two masses are connected by an elastic wire consists of
two "normal" modes. The first is the motion that would occur if the wire were inelastic.
The second may be interpreted as each mass executing simple harmonic motion, the two
harmonic motions being in phase, with the amplitude of the motion of mass m1 being

proportional to the mass m2 and the amplitude of the motion of the mass m2 being

proportional to m. 2

11.1 .d With Friction on the Bearing. In this section, the equations of motion for an
Atwood's machine for which there is friction on the bearing are derived. Referring to
Figure 1.d, T 1 is the tension in the wire that joins the mass m1 to the pulley and T 2 is the

tension in the wire that joins m2 to the pulley. Also from the figure, it is clear that:

z 1 +z 2 =2h + irR-i =constant (1)

where t = length of wire joining the two masses. Differentiating Equation (1) with respect
to time yields:

z1 + z = 0 (2)

and

ii + 2 0 (3)

6



The force acting on m1 is:

T 1 = mlg + ml 1  (4)

and on m:

2 = mg + m2z2  (5)

If m 2 > mI , so that the direction of motion is as depicted in the figure, i.e. clockwise,

the forces balance out as:

T2 =T +FB (6)

where FB is the force due to friction on the bearing. Denoting the coefficient of friction by

ps, the total frictional force is assumed to be:

FB = p(T 1 + T 2 ) (7)

Thus, Equation (6) becomes, using Equations (3), (4), and (5),

T 2 = T 1 + u(Ti + T2) (8)

or
(ml-m 2 ) + U(ml±m 2 )

2 (ml +m 2 ) + /(m 1-m 2 ) g (9)

If the coefficient of friction of a particular bearing is unknown, IL may be found by
solving for it in Equation (9). A simple experiment, using known masses in 1 and m 2 , a

known value of g and determining i2' enables one to calculate p.

11.2.a An Atwood's pendulum is defined as an Atwood's machine in which one of two
masses is allowed to swing as a pendulum while the other remains constrained to move only
in the vertical direction. The pendulum motion of the one mass induces a varying tension
in the connecting wire; this, in turn, produces motion in the second mass. It is shown that
this motion an be made periodic if the ratio of the two masses and the dependency of this
ratio on the initial conditions are chosen as to be prescribed in this report. If this condition
is not met, the n r" o n cor- ists of the superposition of two motions. The first is motion in
a constant gavt. 'n , eal field where the effective "gravity" is kg; the factor k is determined
explicitly. ., -. *t,.ad is the periodic motion that is the central theme of this section of the
report. During uie "nurse of the analysis, the fundamental frequency of the periodic
motion is determ5., ' It is shown to be slightly higher than the frequency of a pendulum
of comparabl lengu- swinging in the earth's gravitational field; the factor is given
explicitly. Thi. work is restricted to the extent that small angle approximations are
introduced initially for trigonometric functions.

The geometry of the configuration studied is given in Figure 2. From this geometry,
assuming that the masses of the pulley and the wire are negligible and that the radius of

7



the pulley may be neglected also, the differential equations describing the motion of the
mass m2 are:

pd +2 # +gsin 0=0 (1)

(m 1 + m 2) -m 2p# 2 +mlg-m 2gcos0=0
(2)

where dots indicate differentiation with respect to the time t. Equations (1) and (2) may
be simplified slightly if we observe that by letting p == g, both equations contain g as a
factor and we may divide through by it. This is equivalent to choosing units so that g = 1.
Furthermore, by using the small angle approximation, these equations then become:

-d* +2i # + 0=0 (3)

(m1 + m2)'- m 2 ,to 2 + (m 1 -m 2 ) +m 2  =0 (4)

Case i) Constant t

We prove now that there is only one solution of Equations (3) and (4) for which
•t= 20 = constant. Actually, we shall show that assuming that t= constant leads to a
contradiction. Using this assumption, Equations (3) and (4) become

4 0 # + 0= 0 (3.1)

m 2 I,0d 2 -(m 1 -m 2 ) - m 20 2 = 0 (4.1)

Differentiate Equation (4.1) with respect to the time t and divide through by m2 to get:

2t0 ##- 0# =0 (5)

If = 0, then Equation (3.1) implies that 0-= 0 and Equation (4.1) then implies that
m 1 - the classic Atwood's machine case with equal masses. For this classic example

there is indeed a solution t= to, a constant. If " 0, then Equation (5) implies that

2,0 =0 (6)

Equations (3.1) and (6) are incompatible. There is, therefore, no solution of Equations (3)

and (4), other than the classic Atwood's machine, for which t is constant.

We proceed now to discover the relationship between m 1 and m 2 for which t(t) and

0(L) are periodic solutions of Equations (3) and (4).

8



Case ii) The General Case.

The perturbation technique requires that Equations (3) and (4) be modified and
rewritten as follows:

2

.td + O=-2"t6 (8)

where we have introduced a parameter E and written m, = m /(m 1 + m2) and

m2 = m2/(m 1 + M2). In Equations (7) and (8), we change the time variable t to a

pseudo-time t by means of the formula t = Vw t and get

t' = E[m2,t0"2 + *n 2 -m 1 ) - m 2WO 2 ] (9)

,to" + wo= -2-Z'0" (10)

where the , indicates differentiation with respect to t. Assuming that t,O,w and m1 are

analytic functions of E:

4= r0 + Er1 + E2r 2 +

O= oo0 + E0 1 + E 202 +..

W-= wO + Ew, + E2 2 +

mI =/0 + Ep, + E2P2 +

We introduce these expansions into Equations (9) and (10) and collect terms in like
powers of E. Sinr'p E is an arbitrary parameter, each coefficient of the powers of E must be
zero. This results in setting up an infinite system of pairs of second order differential
equations which can be solved successively and recursively. The first set of pairs is
obtained by setting E = 0. The two equations obtained are:

ro' =0 (11)

r0 06 + w 00= -2r,06 (12)

The solution of Equation (11) is r0 = r0 , a constant, since we assume as an initial

condition that r0 "(0) = 0. The solution of Equation (12) then becomes

00 = 00cos(kt) (13)

9



where 0 is the initial angular displacement, k2  w0 /r 0 and we have assumed that

00'(0 ) = 0. It will turn out that w0 plays no role in the final form of the formulas for p(t)

and 0(t). In terms of the physical variables, k2 = g/p(0).

If Equation (9) is differentiated with respect to the parameter E and then E is set
equal to zero, we obtain:

rI  m2r 000 '2  pOwO + m.2wO(1 -! 02) (14)

When the values of 00 and 00, , as given from Equaticn (13) and its derivative, are

substituted into Equation (14), and remembering that r0 = r0, a constant, then, after some

algebraic manipulation, Equation (14) may be written as:

r1" = w0[-M0 + M2 + ()m 2go2 - (3)m2 0
2cos(2kt)] (15)

Since we are seeking a periodic solution for r, the secular term in the general solution
of Equation (15), the term that would give rise to a quadratic increase or decrease with
time in rl, will be eliminated if we set:

po = + ()m 2 o2  (16)

Otherwise, r1 will contain a term of the form (-p0 + m 2 + (I)m 29 0
2)t 2/2 and, depending

on the relative magnitude chosen for p0 and (m,2 + (!)m2002), r1 increases or decreases

quadraticaly with time. The solution of Equation (15), for the initial conditions
rl(O) = r1'() = 0, is:

r1 = ('-)r 0m2 0%2(cos(2kt) - 1) (17)

When Equation (10) is differentiated with respect to E and then E is set equal to zero,
we obtain:

ro0I + w,,001 =-rl1%- wl0-2rO6 (18)

Since r0, 0 and r1 are known, we substitute their respective values into the right-hand

side of Equation (18) to obtain:

ro~i + Woo1 = 0{-[w1 + (I-S)mO2 2w0 1cos(kt) +0 32 0 1

[(A)m,2 00
2 w0]cos(3kt) } (19)

32 1

I0



We are interested in obtaining the particular solution of Equation (19) that remains
bounded with increasing time. i.e. we are interested in excluding the secular term. That
part of the particular solution of Equation ( 1. 9 thnat ar-c .'. the tcr n

0o[ , 1 -+ (Y)r 0olwo]cos(kt)

is of the form at sin(kt), where a is a constant depending on the several constants in the
equation, namely, r0 , w0' w , m2, and k and whose explicit dependency on these is not

important. What is important is that unless a = 0, the function t sin(kt) oscillates wildly
and it is this oscillation that must be eliminated. This is done by choosing

=-(12)m10 W(20)

With this done, the particular solution of Equation (19), with initial conditions

0 (0) = Oi'(0) = 0, is:

01= !s)15 %0(m2 0 2)[cos(kt) - cos(3kt)] (21)

Note that if w1 is not chosen as in Equation (20), then the solution for 01 will

oscillate wildly with time. We interpret this by saying that the mathematical procedure
fails. Thus, in order to retain mathematical viability, we must pick w1 as given in

Equation (20).

If we were to proceed no further, we would have the following approximate solutions
to Equations (3) and (4) (after setting E = 1):

4.= r0 [1 + (-6)n20 0
2(cos(2kt) - 1)] (22)

0= 0{cos(kt) + ( -- )(3,200
2)[cos(kt) - cos(3kt)]} (23)0256

where m1 =M 2 + (-)m 2 00
2  (24)

W Wo[- (iU)m 2 o 21 (25)

k2 = w0/r0  (26)

We proceed to get the next higher order terms in the expansions for t, 0, ml, and w.

11



By equating the coefficients of E2 from both sides of Equation (9), we get

r -[wOp 1 + 1(po - m.2)] + mn.2 [rl 02 + 2ro060i ]

2 10

- I rm[ w 002 + 2wO00 1] (27)

After substituting the several quantities already found for their respective values as given

in the right-hand side of Equation (27), it may be rewritten as:

r = ("9-)m 2
2% 4w[4 cos(2kL) + 9 cos(4kt)] (28)

and where, in order to preclude the introduction of a secular term in r2 , we had set:

pI116 )m6n20. 4 (29)
512

The solution of Equation (28), subject to the initial conditions r 2 (0) = r2 " (0) = 0, is:

r 2 = [ (m.2 90
2)2r0[25 - 16 cos(2kt) - 9 cos(4kt)] (30)

By equating the coefficients of E2 from both sides of Equation (10), we get:

roo + wo002 + [r1Oi + w,1 01 
+ 2r, 01 '] +

[r206 + 900 + 2r 2'00/1 = 0 (31)

After substituting the values already found for ro,OO,r,0l,wO,w 1 and their derivatives

where appropriate, we get:

r 092 " + w002 = 00-] m2wo[163 cos(3kt)- 291 cos(5kt)] (32)

and where, in order to preclude the introduction of a secular term in 02, we have set:

W2 = ( 220---),20 4w (33)

The value of '2, subject to the initial conditions 02(0) = 02'(0) = 0, found by integrating

Equation (32) is:

02= [-9m22005[66 cos(kt) - 163 cos (3kt) + 97 cos (51t)] (34)

12



Summarizing the results obtained thus far, we see that after setting E 1, we get the

following approximate solutions for 4(t) and 0(t):

4t(t) = r01 + (-a6)m 2 0 22(cos (2kt) - 1) +

9 .jrn 2004(25 - 16 cos (2kt) - 9 cos (4kt)] (35)

t) = [ s0{,s (kt) + (-Li--)m 2%02[cos(kt) - cos (3kt)] +

9 22 O4166 cos (kt)- 163 cos (3kt) + 97 cos (.5kt)]}, (36)

where

m n 2 ± (I)m2902 + (-y)2 2 0%4  (37)
4512 u

W= U)0[l- (!-)M,202 + ( ) -I Em 20 4] (38)

1 _ 1 _ 1
Since t = (w) 2 e, 4 (t) :* ( 2 t), 0(t) € U (w 2 t), i.e. in Formulas (3.5) and (36)

replace t by w 2 t. Finally,

p(t) = g4(w 2 t)

and

1

8(t) = 9(w 2 t)

II.2.b Atwood's Pendululm-non-periodic motion. The configuration, symbols and

references to equations are as in the previous section, II.2.a. Whereas in the previous

section we used 1 - 0' /2 as the small angle approximation for cos 9, we shall in this section
set cos 9 = 1. Equation (3) remains unchanged but Equation (4) simplifies to:

(mi1 + m2 )"t-im 2 €4 2 + (I 1 - 2 )=0 (4.1)

Having seen that for the periodic solution to exist, we must have m1 > m2 (to counteract

the centrifugal force produced by the swinging motion of the mass m2 ), it is reasonable to
expect that if m1 is less than the critical value as given (approximately) by Equation (37),
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then the length tz would increase indefinitely (or at least to the e.,tr t the physical
apparatus would permit), whereas if m1 is greater than this critical value, then -z would
approach, and become, zero. These observations were confirmed numerically, and in fact
the computations were carried out without assuming the small angle approximations, by
integrating Equations (1) and (2) (Mittleman3 and Zeigler 4 ).

The special case for which n = M9 was studied extensively using numerical

integration in Mittleman3 and Zeigler4 . In , Jon Lee discussed, using asymptotic methods,
both the short time and the long time behavior of this case and provided a theoretical basis
for the numerical experiments reported in 3 and 4

II.3.a Two Countered-Balanced Dumbbells. The system to be described is depicted
in Figure 3. The two masses m1 and m2 are connected by a ma, -s rigid rod and
suspended by inextensible wires from the two pulleys p, and P2 . The wires then run
horizontally across the top of the apparatus to the pulleys P3 and P4 and then drop down
to the two masses m 3 and i 4 which are also connected by a massless rigid rod. If the only
forces allowed to act on the two masses mi and m2 are gravity and the tensions in the
wires and there are no initial conditions on these two masses to produce motion out of the
vertical plane, this dumbbell can move only in the vertical plane. For the dumbbell made
up of the two masses m3 and n4 , initial conditions can be chosen so that the four points
P3, P4, M3, and m 4 need not be coplanar and in fact, the dumbbell m 3 - m4 need not lie in
the vertical plane containing P3, P4. The mathematical description that follows is based on
these assumptions.

The kinetic energy of the four masses is:

4

T=I1 mi(xi 2 + i (1)
i~ 1

The potential energy of the four masses is:

4

V = iigzi (2)
i=l

We introduce the following vector notation: for i = 1,2.,3,4 (where appropriate)

}i = (xi, Yi, zid

Pi = (Pix, Piy' Piz )

-4

v.i = r i

14



-4
- -4

= -Pi

12 =  r 1 -r
-4 9

4 3-44
4 = r3 -r 4

-4g = (Oog)

The equations for the constraints are:

(V1 -r2)'(r1 - V2 ) = 12'1t12

2: (V3 - 44) '(7 3 - 4) = 1t34" I3

1 1
03: P[7 1" 112 +  73 " 73]2 =

11

IPl'(lPl + (r-3 -43 ) ( r 3 -3 )-  = 1 - d 13

1 1
04: 2" 79' -4' 14]

12 r r 41

2 -P2)'(2 - P2)]2 + [( 4 -p 4 )(4 -P4 4 )]2= L2 - d 2 4

where L 1 and L2 are the lengths of the two connecting wires.

Hamilton's Principle is:

tf F(t;xl,x2,...,z 2,z 3)d - 0
t0

and where:
4

F = T - V + li(t)¢0(xX2,...,ZaZ4)
1

and where the A.(t) are, for the moment, Lagrangian parameters. Carrying out the details

of the computation leads to the following system of equations:
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-r. rlI - P i

mr =-m + 2A(t)(-V) +A - i71- -

--1 -4
m')g_.=-gg2A, (t)(- 9) - PA()

--3 -P3
m-,r = mg 2 3A t)(r3 -'4) + A(t) 3 ----- 3

r4 - P4

4 = -m 4g - 2A2 (t)( 3 - 4 ) + 4(t)

to which we must adjoin the four constraint equations.
This second order system of differential equations is replaced by an equivalent system

of first order equations so as to facilitate using numerical integration; in this case we chose

Runga-Kutta-Fehlberg
6 .

•-4 =

-4

r iP

-- 4 -4 - - p 1--

m 2v = -m~g + 2Al(t)(r 1 - r2) + A(t) - P2

-4--

r3 = v3
22P

-4 r3 -P3
m3,€3 =i -39 + 2A 2(t)(r 3 - r4) + AP() 1

r4 V v4

rr
-4

- r4 -p

4 = -m4 - 2A2 (t)( 3 - 44 ) + A4(t) -T--

4

and again we must remember to adjoin the four restraint equations.

These equations are not as yet in a form suitable for numerical integration since we
do not know how to handle the four Ai(t). We proceed as follows. With time, t, as the

independent variable, differentiate each of the four constraint equations, twice. By
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adjoining these eight equations to the twenty-four that contain i and .. we can eliminate

all time derivatives. The result of these lengthy and tedious algebraic manipulations is a
linear system of four equatiorls in the four A-(t). The numerical integration can now begin.

Pick initial conditions for ri(O) and vi(O) consistent with the constraint equations.
Although it is possible to parameterize these feur constraint equations, this is not
recommended. Instead, use a Newvton-Raphson procedure. With these values, calculate
the Ai(0). Enter into the Runga-Kutta-Fehlberg routine. As the program progresses

through the several steps of the R-K-F routine, it will be necessary to know (i.e. calculate)
intermediate values of the 7i and i; these will be got from the constraint equations. Thus,

even for one step in the R-K-F algorithm, to get -r(t!) and -vi(t), it is necessary to make

several intermediate computations using the constraint equations. The number of such
intermediate excursions will depend on which order R-K-F you chose to use. The details
of the code are not included in this report; the programming and running of it was done by
Arnel Pacia of WRDC/FIBG and would be available from that source.

While there is literature on systems of differential equations with algebraic
constraints, none seemed immediately applicable to this particular problem and the method
described, therefore, was invented for this application.

Several computer runs were made using this code and aside from the general
oscillatory patterns that we had come to expect there was one surprise. When we picked
equal lengths for the two wires connecting m1 - m3 and m2 - m4 and displaced the
m3 - m4 dumbbell from its rest position and released it so that it would swing, we

calculated the distance from the center of the m3 - m4 dumbbell to the center of the

m 1 - m2 dumbbell measuring from the first center over the top of the apparatus and then

down to the other center, we found that this distance changed and depended on the angular
orientations of the two dumbbells. It was always less, albeit the amount was very small,
than the common lengths of the connecting wires. While this is of no significance in this
problem, it portends difficulties if one were to try to formulate a problem for three masses
in a row, again rigidly connected, counter-balanced by a similar arrangement and
connected by three wires of equal length. It seems to this writer that the problem is akin
to the problem of supporting a rod at three or more points; this problem is known to be
statically indeterminate and elastic theory is required for its solution.

1I.3.b Two Counter-Balanced Dumbbells Connected By Three Wires. From the
discussion presented in the previous paragraph, if three wires are used to join corresponding
points on the two dumbbells, and one of the dumbbells is set into motion, there could be no
tension on the center wire. This writer would infer then that the problem of three
connecting wires will yield results not different from those obtained from the problem with
two connecting wires. The evidence is as indicated above but a more convincing argument
may be required.
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11.4 One Dumbbell Counter-Balanced By Weights. Suppose th, co:,figuration discussed

in 1I.3.a is modified by eliminating the constraint 0, that is, by assuming that the masses

m1 and m2 are not rigidly connected, in fact, are not connected at all. Under this

assumption the only motion possible for these two masses is vertical, i.e.

xl(t ) = Vl(t) -= x2(t) = .2(t) = 0. The equations of motion for this situation are trivially

derivable from those given above by paralleling the derivation without the 0 constraint.

We have not carried out, the details and thus have no numerical results to report.

As vet, another possibility would be to initially have in, m4 and the rod connecting

them at rest and impart initial velocities to m 1 and i i.. The above equations certainly

suffice; we have not, however, carried out the details and have no results to report.

It would be reasonable now to counter-b-a!ance the dumbbel hy three or more
weights and study the motion. Obviously this modification circumvents the problem ofstatic indeterminance and mught provide further insight into the motion. This has not
been done.

11.5.a Counter-Balanced Rigid Rod - With Two Wires. We start with a rod of

length 1, uniform density p0 , and uniform cross-section A0 . The center of mass of the rod

is at the point 0. Consider this rod in an inertial coordinate system (x,y,z) such that one

end of the rod is at the point ' = (x 1,Y1 , 1 ) and the other end is at the point

r2 = (x,,v2 ,z'Y ). If cos O', cos o2 cos a3 are the direction cosines of the rod with respect

to the inertial coordinate system, then (cos a,, cos 0,)-. cos a 3) = 2 - rj)/L. The

coordinates of an arbitrary point on he rod is given by the vector

r=r + r2 - r  O<o<l

In the rod, set up a right-hand coordinate system (x',y',z'), with the x" direction
along the length of the rod, (he y' and the z" directions both orthogonal to x' and to each
other, but otherwise unspecified. The origin of this system is taken at 0. If the linear mass
density of the rod is given by p(x') 0 (in our case, p(x') = p0 ), then the mass rr 1 of the

rod is given by

= fP(x') dx' =

and 0 = fp(x') x' dx'

and I1 = p(x')(x,)2dx" = (m 12)/12
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and where the integration is wi We interval [- " . Let the origin of the (x', y' ,z')

system have coordinates xi ,. .zi,) in the inertial system- Then an arbitrary point P in

space may be referenced in both ,ystems; the relation between coordinate values in the two
systems being given by

X +a,x' + a .,y' 4- a13 z

v Vc i.a, x +a~y"+ a,.Z"

z = Z -a31 +a32Y" + a33z'

and where A (a.. is an o-f hoonal matrix. Por points o. the rod.v, z' 0. and we

L ave

xX Xlc ±a i x'

X XIC a X

ic 37 Z IlC + 1.31x '

and, in tt rms of the angles previously defined:

a I coS 0

a,)1 = cos t.)

a.31 cos (t3

To calculate the kinetic energy of the rod. we consider first an element of len-th dx'.
fhe mass dm associated with this element is p(x')dx' p0 dx' and the square of tie

velocity, v2, is:

v2  -2 y, +5 + z-

and ,%-here

xx Ic -4 aI

z =ZC + a 31.x'
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1The kinetic cilcr v of thi', element is equal to Ifto(x dx miv after summing over

the length of the rod. the kiretic energy is

= 2 +, 1 2 + a, 2 n a.I- '  + c lc-i ; + li + a )  + I ) 1J

This is nothing more than the we1l known result that the total kinetic energy of a rigid
body is eoual to the translational kinetic energy of the body as if all its mass were
concentrated at the centCr of mass and moving ,h thne velocity of the center plus the
kinetic energy of rotai,,n -i ia lit the center of mass.

The three variables a1 1,a., 1 a31 are not, ii.depe.idcm. but are related by the equation
2 2 2 = ia11 ----a.+a31- =.ndepenident variabk ls 0 , ma .nl;lodced as follows: let

31 -cos " co; 11 a. . Thcn

2 1 2 '2 s 2 o 2

The poteItial r1,.v F .,f J Ie ro( is:

'T /
f"1 ,)(x' ) dx' + a.g f p(x')x - mg d 1C

The Lagrangian fu'nction for the rod is:

L1  T 1  V

Since a second rod is to be included in the configuration being studied, we would
repeat the above computation with all subscripts I replaced by subscripts 2. This would
lead to the following values for T9 ,) V9 and L,.

, '", 21... 2 ' )2)

= !7 + + )1 + + c()m + +bb)1 + b3 1  12

anId the dnci0ion coi..II a v ae been replaced by the corresponding direction cosine for
lhr, s0((rd rod (.). flhe pooft1ial energy 1s gi(1y:

11' Vi Z,\;2 =- m2g2c

a:nd *; La,.;ran~ian fm; ,:io, __., .'o -There remain hr cnmt raints imposed by the

\i,'hr(,I U( )ll~t" n th' two roV.

\WO ,'.,op !!o '. I Iwo oi nrtIig tlie two rods. Refer to Figure 4. The

Oai;io i( ns off I r i ',r I T, .Iil ill 1dh ili.rtial system are given by ) (i),

20



i = 1.2.3.4. We assume that -,11 four P3i are at the same height above tl-. 8round plane,
although this is not essen.tial. The distances I -P 3  - [2 =P4  d1 = d24 ald

P' 1 ) = 3 - P4  d :34 are assumed to be constant. We sall refer to the wire

passing over pules I and 3 :,.s wire I anid the v ire passing over pulleys 2 and 4 as 2 and
denote the length of wire I by I and the length of wire 2 by 12. Wihe 1 is connected to red

I at the point (x1 ,0.0) in to coordinate svstem fixed a the rod I and is connected to rod

2 at the point (x:' .0,0) in the (oordina,.e system fixed in hat rod. In the common inertial

coordinate system, the coorinates of lhese two points are:
xc + a xl " 'v a'- x ' + Ixl ) and (x, + b, x 'Yvc + b2x * 'Z + b, X

1C ic a 1x - c 21I '.'IIc "1 1 2 Cbl.~ 9 ~ 2 1 ')Zc~bl
respectively. We shall refer to this flrsr triet of values by q and the second triplet by

r 3 The length I of wire I is then given by

Iq 1i+ d13 + p 3a- ql 3

IL trictly analogous fashion, wire 2 is connected to rod 1 at the point (x2 ,0,) and to rod

2 at the point (x4 .0.0). In the inertial coordinate system, we would have

(Xi (x a~ x.' + a91 x Z + 4 a31 x. and
S(X~c -- b1 1xf > + b9 1x4* ' ± b3 1xi ) The length 1' of wire 2 is then given

by:

S±d 2 4 ±+ p ' 4 1 I

Note that F 1 and 17, represent the constraints on the system. The coordinates of the p- are

assumed to be fixed but the coordinates of the qi are variable.

While the time t is the only independent variable, the dependent variablos are Xlc,

lc, ZIc 01, 0, x.-),, .c z2c' Z2 02 We are now in a position to form the generalized

I.agrangian:

L7= LI + L + AI(t) F1 + A2(t) F)

.,d obtain the Euler-Lagrange equations by taking

t1
bf L* dt =0

to
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We leave the conpu,*at on at this point ..'..use iT parallels : : ,. a l-and
numerically the work or'esented above. ('ou',p!ite2r (odes were nol w: :i , for this kase;
time (lid not permit.

I1.5.1 Counter-Balanced Rigid Rods - With MoireTh1 w T%- ,\ Wires. If the two
wires are attached syn:metricallv to the rods at the C)i)t - :i" e,O). and (±," .0,0) and
rod 2 is set sign while the itial coniicus for rod 1 re chosen so Iihat it can move

only in the [v , z ] p)ae, then. I believe that the (liituce t', en thO centers of the two

rods, as niea-sued over the top of the apparatus. woulu be h than the distance similarly
defined if measured when both rods are at rest. Thlus. h r example. if a third wire looped
over the top of the apparatus were to join he two c( tei-. there would be slack during
most of the time that rod 2 is swinrging. The itjatio re,:.ceS then to one of static
indeterminancy and it is questionable, in my mind that th method of approach, namely
two counter-balancod rigid rods connected h. r, or more , can be correctly solved
by simply adding addio,nal coust:-ailts. . wojuld need oc ,,- to elastirc theory.

If one forgoes the seo.end rod and atta' r',e t(., one rod to a set of isolated point
masses by wires stret hed over t,'i o,,"_ ' a pIhi p iv. I , tie pr,)blem becomes tracta)le
and the methods described above can b(e us',] tj aaivze, and describe the motion. These
details have not been carried out.

I.6.a Two Counter--Balancedl Flexible ous -- With Two Wires. In this section, we
set up the Lagrangian function of two counter-balanced flexible rods. the general
appearance ofthe arParatus is as for the case 01 two il'Id rods; as may be expected,
however, further analysis is required.

\Ve start with an ihertial coordinate systfm (,:i.yz) and (onsider a rod of uniform

density p0 and cross--section A,, -hose center of mass is at. the p,int 0: (xI 0 ,yl°.Z1
0 ) in the

inertial coordinate system. Liet :2Z9 be a coordinate systemi whose origin is at 0 and

whose axes are and will remain parallel to those of the (x ,YI,Zj) system. The (x2 ,y2 ,Z2 )

axes will move as the center of mass of the rod moves. Let (x3 ,Y3,z3 ) be a coordinate

systein whose or.iain is a 0 but whose axes coincide with the principal axes of inertia of
the rod: the x. axis lying abo,,,the Iong axis of the rod. (Figure 5.a.)

Let P he) poiiP. v" wboe c ordhibates relative to the (x3 Y,:3,Z 3 ) axes are

(a3..3 3 ) x, ,,..105, t !'Mdina S i 1 (t - Z.) ) SSt em are (,2., 2, 2), then

3"~U .3'-.3 to 02,32,7)): A( ai ), 3 ',3 f 3)'

whore A(ai ) i s a .e r Ii ,- a i rix Ip', fyi a the orien at iou of thr (x. *y3.z 3) system in

the(, X.)-.v.).) t..... nd od for the transpo " -, 4 ( 3) .• :.,:2z2 -'t~ a~ ,a2 31 :  3., .

3' 3' T73)
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If the coordinates of the point P in the inertial system are (d ia-4,71), then

(atf31,,' 1)  = (X1 ,y 1 ,z1 ) + A(a ij)(a 3 ,3 s73)T

We consider now the rod flexed about the 3 direction Before W(nding, a

cross-section in a plane perpendicular to the y direction remains, after bending, in a plane

perpendicular to the Y3 direction. Such a cross-section, in a plane parallel to the (x3 ,z 3 )

plane, is depicted in Figure 5.b.

Suppose now that the rod, before being bent, had been sectioned into small lengths
by a set of planes perpendicilar to the x 3 axis. Let us look at one such section and the

partitioning planes after bending. Grossly, this is indicated in Figure 5.c; the two planes,
which had been parallel before bending, now intersect in a line parallel to the Y3 axis and

pass through the point marked 0' in that figure. An enlarged version of that section is
given in Figure 5.d.

If (a3, 3,/3) are the coordinates of the center of mass of the element of volume

depicted in Figure 5.d, then we set up a fourth coordinate system (x4 ,y4,z4 ) whose origin is

at (a3,3'3,73 ) and whose axes are parallel to the (x3 ,y3 ,Z3 ) axes. In this coordinate system,

the mass and volume of the section, which we denote by Am and Av, are related by the
equation Am = p0 Av.

Let (a4 4f14) be the coordinates of a point P* in the element Av depicted in Figure

5.d. Since the (x4,Y4,Z4 ) system is parallel to the (x3 ,Y3z3 ) system and (a3,33,73) are the

coordinates of the center of mass of the element Av in the (x3 ,Y3,Z3 ) system, then the

coordinates of P* in the inertial system are:

(x17ylzl) = (x°,yl,z) + A(aij)( &3 + a4 1 3 +/+4 7 f3 + Y4 )T

The kinetic energy of this element of mass is:

f pf fpo('2+ 1+ 1
2 dx4 dYdz4

(AV')

where

0*0*0T yT(X(,xjz 1) = (Xl, z,,)+A(aij)(c3 )33 ,'y3 ) +A(ai )(&3+a4 ,43 3+a3 4 , 3 +y4 )

The "phase space" variables are:

lO l° 10,Z0), A(aij), (a3,133,y3), (a 3,*3)
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since the variablcs (4,34, '4) are dummy variables in tlhe int ,2,,,,

To calculate the potential energy of this element of rnass, v, e nc-ed:

1  3 -t 3 (a 3 +r.) + a: 2 (33+,31) + a 3 s i, 3

so that the potential ener-gy is:

P0f171, (a:3+ a,1), a --'3 4) ±..., i dx 4 d 4 dz 4

(Av)

o-rz 
0  a(a 3 )+ + a,.,,3+ .7 3 )] Av

Sl + a31(3) 3 a33'

The "phase space" variables arc. z!°, (03;, ) and (a31 ,a32, a3 3 ).

We calc",!a ,e the strain energy U in the rod as follows: Let (dU/dv), (where dv is an

element of volume), be the work of deformation so that (dU/dv) = I OE whc. or is the
2

stress in the x3 (=x4 ) direction and E the corresponding strain (deformation). From

Hooke's law a = EC. where E is Young's modulus, and so the quantity we need to calculate

is 1 a 2 = I EE 2 . We refer asain to Figure 5.d.

Prior to bending, the . .<tions mm and pp were parallel; after bending these two
sections intersect in a line (wh ose trace in Figure 5.d is 0') parallel to they 3 axis. The
longitudinal fibres, (those measured along the x4 axis) undergo extension on the convex

side of the neutral axis, whereas those on the concave side are compressed. The arc nq is
the trace of the surface in welch the fibres are neither compressed nor extended during
bending (the neutral surface).

The elongation of a fiber at a distance z above the neutral surface may be found by

first drawing qs parailei to mrn. We look next at the two triangles stq and nq0". The
radial line 0'qt (uts the two circular arcs at right angles, i.e. we assume that the angles
nqO" and stq are both right angles. Also, since sq is parallel to nO'. I he line tqp0' may be
considered a transversal intersecting two parallel lines and thn igle sqt = angle nOq.
The two triangles are similar and their corresponding sides are proportional. The "unit"
extension of the fiber rs is (st/nq) = (qs/0'n) = -(z 4 /p), where D = radius of curvature of

the arc nq. [Note: do not confuse p and P0, the density of the rod; the negative sign comes

from the fact that in elementary calculus, the curvature is considered positive if the curve
bends convex upwa-d.) Thus, the strains of the longitudinal fil''rs are proportional to their
distances from the neutral surface and inversely proportional to the radius of curvature of
the neutral surface. Since we are assuming that (dz3/dx\:) << 1, we are assuming
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that the curvature may be taken as (d2z3 /dx 3
2). This permits us to write the unit energy

(dU/dv) =!'E[z 4 (d2z3 /dx 3
2)]2

Thus: (AU) -E(d z /dx 2 )2  ff z 4
2dxY 4dz4

-'E a2 1(:,7, 2 '2( A_. C dV dZ,

If we let

I = ff z4 dy4 dz4

then

(AU) !E(d 2z3/dx3 2);(Ax4) I

- !EI(d2 z3 /dx 3
2)2(Ax 3 )

Continuing, the kinetic energy of the rod =

f[ p0 fff (i 1
2-+i 1

2+Z12)dx4dy4dz4 dx3 '
(AV)

the potential energy of the rod =

f Amg 1z + a3 1 (,,3 ) + a3 2(33 ) + a33 (,Y3 )] dx3

and the strain energy of the rod =

f !EI(d 2z3/d 3
2)2(d 3)"

The integration in the x3 direction is over the length of the rod, [-2,

This computation must be repeated for the second rod which is to be used to
counter-balance the first one. In addition, and paralleling the method used in Section 11.5,
two constraints r 1 and r. are to be introduced. The Lagrangian function takes the form:

L = kinetic energy - potential energy - strain energy + Al(t)F 1 + A2(t)r 2

The Euler-Lagrange equations are then obtained from Hamilton's principle:
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t.1

sf Ldt=0

0

Whereas in the previous examples, the Euler-Lagrange equations were ordinary
differential equations with algebraic constraints, in this case they are partial differential
equations with constraints. Numerical procedures, such as the finite element method,
would have to be extended to take into account these constraints.

116.b If more than two wires are used to join the two rods, the problem assumes
another dimension of complexity. In the previous scction, the flexibility was assumed
limited to vibrations about the y3 axis; the bar was treated as if it were rigid with
respect to bending in the z3 direction. Whether a third wire sould provide support or

simply be slack when the rod is vibrating only about the Y3 direction is not known.

In order to get a better understanding of what is happening, it may be necessary to
remove the restriction that the connecting wires be inextensible and allow for elastic
connecting wires as was done in Section II.1.c.

The comments of this section are purely speculative. It may be possible to get
theoretical answers. Numerical results should be obtainable with reasonable effort.
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An Atwoods machine with unequal radii.
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Figure I.c
An Atwood's maqhine with elastic wires.
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Figure 5.b
A section of a slice of the rod,

a cross-section perpendicular to the Y3 6XiS1
before bending
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Figure s.c
A section of a slice of the rod,

a cross-section perpendicular to the y3 axis,

ef ter bending.
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Figure 5.d
An enlergement of Figure s-c
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